BRITISH LIBRARY OF POLITICAL AND
ECONOMIC SCIENCE

LONDON SCHOOL OF
ECONOMICS AND ECONOMICS AND POLITICAL SCIENCE
10, PORTUGAL STREET,
LONDON WC2A 2HD
Tel. 01-405 7686

Life tables

The Registrar General's
decennial supplement for England and Wales 1970-72

Series DS no. 2

Contents

Report on Life Tables by the Government Actuary

The construction of English Life Tables No. 13 (paras 3-9)
Calculation of crude death rates (para 3)
Calculation of graduated rates of mortality (paras 4-9)
Comparison with earlier English Life Tables (paras 10-19)
Mortality rates according to marital condition (paras 20-26)
Tables
A Rates of mortality (q_{x})
B Rates of mortality expressed as percentages of English Life Table No. 8 rates
C 1970-72 rates of mortality as percentages of 1960-62 rates and male mortality rates as percentages of female rates

D Expectations of life (e_{x})
E 1970-72 rates of mortality per thousand $\left(10^{3} \mathrm{q}_{\mathrm{x}}\right)$ for men according to marital condition
F 1970-72 rates of mortality per thousand $\left(10^{3} q_{x}\right)$ for women according to marital condition
G 1970-72 mortality rates for single, widowed and divorced as percentages of those for married

Figure

A Rates of mortality expressed as percentages of 1911 rates

Appendices

I Calculation of the 'exposed to risk' for the years 1970-72
II Table II. 1 Crude central rates of mortality $\left(\mathrm{m}_{\mathrm{x}}\right)$ 1970-72, England and Wales 13
III Table III. 1 Pivotal values of m_{x}
Table III. 2 Comparison of 'actual' and 'expected' deaths Table III 3 Comparison of 'actual' and 'expected' death in 1

作
IV Table IV. 1 English Life Tables No. 13 1970-72 together with associated additional tables and commentary were prepared by Edward Johnston, CB, the Government Actuary, at the invitation of the Registrar General for England and Wales.

The tables are based on the mortality experience in England and Wales during the years 1970, 1971 and 1972 and the present volume forms part of the Decennial Supplement 1971. It is generally similar to its predecessor, Decenime Suplion of graduation by cubic splines.

The Registrar General wishes to place on record his appreciation of all the work which has been done to provide the accompanying valuable commentary and tables.

The series of English Life Tables has continued for well over a century. The idea was conceived by Dr William

Farr, the first Medical Statistician at the Genera Register Office, who himself produced Numbers 1,2 and 3 which were published between 1843 and 1864. The next three tables were also produced at the General Register Office. Number 4 was compiled by Dr William Ogle and published in 1885 and Dr John Tatham wa responsible for Numbers 5 and 6 which appeared in 1895 and 1907 respectively. After the 1911 Census the Registrar General invited Mr George King, a former Tables 7 and 8 and these incorporated important advances in principles and methods. Subsequently the English Life Tables were prepared by the Governmen Actuary of the time at the invitation of the Registra General. Thus Sir Alfred Watson, KCB, undertook the preparation of Tables 9 and 10 after the 1921 and 193 Censuses, and Table No 11, which was based on the 1951 Census and formed part of the Decennial Supplement 1951, was the work of Sir George Maddex KBE. Sir Herbert Tetley, KBE, CB prepared the English Life Tables No 12 which were based on the 1961 Census

Report on Life Tables by the Government Actuary

A R Thatcher Esq CB
Registrar General for England and Wales Office of Population Censuses and Surveys St Catherines House
10 Kingsway
LONDON
LONDON

Sir,

In compliance with your request, Life Tables for males and females have been constructed, based on the mortality experience of the population of England and Wales during the three years 1970, 1971 and 1972. The calculations have been based on the deaths registered in 1971 Census. I have also examined the variations in mortality according to marital condition during the ame three years.
2. The present tables form English Life Tables No. 13 and, like the previous ones, English Life Tables Nos. 8 o 12 , have been based on a period of three calendar years centred on the year in which a full census has been carried out. Study of the data disclosed no grounds for hinking that the mortality of the years 1990-72 differed materially from the general trend of mortality over the years 1966 to 1976^{1}. There was therefore no reason to depart from the customary three-year period.

The construction of English Life Tables No. 13 3. Calculation of crude death rates. In my predecessor's report on the English Life Tables for 1960 to 1962^{2} he explained how the 'exposed to risk' was estimated as accurately as possible from the enumerated census population and the tabulations of registered deaths. A very similar process was used on this occasion; it is described in detail in Appendix 1. Crude he 1970-72 death exposed to risk; these figures are given in Appendix II.
4. Calculation of graduated rates of mortality. The crude rates of mortality given in Appendix II do not run moothly from age to age. In part, these irregularities may be due to misstatements of age, both in the census and when deaths are registered, though such mistatements are thought to be less important nowadays
ee The Recent Trend of Mortality in Great Britain C D Day See The Recent Trend of Mortality in Great Britain C D Daykin (Journal of the Institur
The Registrar General's Decennial Supplement, England and Wales, 1961 Life Tables.
The results of their work were published as Experiments in the Graduation of the English Life Tables (No. 13) Data, Transactions of the Faculty
of Actuaries Vol 35, p.281.
than they used to be. In part, too, they are due to the impossibility of calculating exactly the 'exposed to risk' at each age. Another cause of the irregularities is, however, random variations. So far as possible thes random variations ought to be removed in the published Life Tables, and this is the purpose of graduation. The graduated rates which, while forming a smooth progression over the whole range of ages covered, still preserves the general shape of the mortality curve.
5. For English Life Tables Nos. 11 and 12, graduated rates of mortality were obtained by a mathematical formula which combined a logistic curve with a 'Normal' curve. Not unnaturally, the first attempt at
graduating the $1970-72$ rates was to see if such a formula could be used again. The particular mathematical formula used for the 1950-52 and 1960-62 tables had been derived, not from any philosophical considerations, but empirically after study of the run of pivotal values of m_{x} and, in particular, of the ratios $m_{x}+5 / m_{x}$ These pivotal values and ratios are given in Appendix III; the picture shown by the ratios was rather different from that in 1950-52 and 1960-62; and this indicated that it would be difficult to obtain a satisfactory fit with the same mathematical formula as before. Indeed, the male ratios in particular ran in such an irregular fashion as to suggest that it would be extremely difficult to fit any mathematical formula not involving more parameters than the seven required for the 1950-52 and 1960-62 formula
6. Experiments with that formula and alternative methods were carried out in the Department and also by Dr (now Professor) McCutcheon FFA and Dr Eilbeck of Heriot-Watt University who had been supplied with a copy of the data in order to undertake experiments in graduation ${ }^{3}$. The results of the work carried out in both locations was to confirm that a satisfactory fit could no be obtained with the formula as previously used, although it could be improved by adding to the number of parameters. Since there is no theoretical basis for a formula, and as there appeared now to be no particular advantage in its use, it was decided to discard it Another method which was examined was to fit a polynomial to $\log \mathrm{m}_{\mathrm{x}}$ over long ranges of ages by the method of orthogonal polynomials. This produced very satisfactory results over each fange, but there wha al of the Instie ther
7. The method of cubic splines is in essence a refinement of the method of osculatory interpolation devised by George King and used for English Life Details of graduation by cubic splines are given in the reference already cited. It involves the fitting of thirddegree polynomials to sections of the data, the degree polynomials to sections of the data, the
polynomials being chosen so that they and their first polynomials being chosen so that they and their first
two differential coefficients are continuous at the boundaries of each section. The method differs from King's method in three respects: first, the data at individual ages are used, and not just the pivotal values; secondly, the length of each section can be chosen to give the best results, whereas King's method used a fixed length of five years; thirdly, second, as well as the first, differences are continuous at the junctions.
8. The spline graduations cover the age range two to 95 for each sex. Appendix III shows comparisons between deaths actually recorded in 1970-72 and those between deaths actually recorded in 1970-72 and those graduated rates both at individual ages and in five-year groups. It will be seen that, though the deviations are groups. It will be seen that, though the deviations are
fairly large at some individual ages, the actual and expected deaths in each age-group are very close to one another and the accumulated deviation is always small.
9. It was then necessary to complete the graduation by obtaining rates at ages below two and over 95 . Rates at ages nought and one were obtained from the records of births and deaths in the years 1968 to 1973 rather than from the census data. At ages over 95 the graduations were completed by extrapolation, assuming that the limiting age for both males and females was 110; at these ages the census data and death registrations are

$\begin{aligned} & \text { Age } \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \hline \text { ELT } 8 \\ & (1910-12) \end{aligned}$	$\begin{aligned} & \hline \text { ELT 9 } \\ & (1920-22) \end{aligned}$	$\begin{aligned} & \hline \text { ELT 10 } \\ & (1930-32) \end{aligned}$	$\begin{aligned} & \hline \text { ELT 11 } \\ & (1950-52) \end{aligned}$	${ }^{\text {ELT T } 12}$ (1960-62)	$\begin{aligned} & \hline \text { ELT 13 } \\ & (1970-72) \end{aligned}$
Males						
0	. 12044	. 08996	. 07186	. 03266	. 02449	. 01980
10	. 01193	. 00181	. 00146	. 00052	. 00039	. 00034
20	. 00348	. 00349	. 00316	. 00129	. 00119	. 00106
30	. 00478	. 00434	. 00340	. 00157	. 00115	. 00097
40	. 00811	. 00688	. 00562	. 00290	. 00235	. 00226
50	. 01482	. 01179	. 01128	. 00850	. 00728	. 00739
60	. 03042	. 02561	. 02415	. 02369	. 02287	. 02075
70	. 06470	. 05997	. 06035	. 05651	. 05566	. 05546
80	. 14299	. 14002	. 14500	. 13629	. 12747	. 12019
90	. 27395	. 26752	. 28614	. 29255	. 25593	. 24077
Females						
0	. 09767	. 06942	. 05455	. 02510	. 01896	. 01523
10	. 00196	. 00180	. 00134	. 00035	. 00024	. 00023
20	. 00295	. 00306	. 00268	. 00083	. 00044	. 00045
30	. 00411	. 00392	. 00319	. 00127	. 00075	. 00060
40	. 00660	. 00532	. 00440	. 00227	. 00180	. 00160
50	. 01140	. 00915	. 00816	. 00524	. 00439	. 00449
60	. 02310	. 01897	. 01770	. 01271	. 01088	. 01025
70	. 05259	. 04646	. 04451	. 03532	. 03104	. 02784
80	. 12419	. 11766	. 11858	. 10466	. 09108	. 08014
90	. 23826	. 23852	. 25061	. 24146	. 22128	. 19805

1 am indebted to McCutcheon and Eilbeck for letting me have details of their computer output.

[^0]
Comparison with earlier English Life Tables

10. A picture of changes in mortality over a period o 60 years can be obtained by comparing English Life Tables No. 13 with the five previous sets, Nos. 8 to 12 age for males and females given by each of these six sets of Tables, and in Table B the changes in the rates since 1911 are shown by expressing the rates from the five later tables as percentages of those from English Life Table No.8. At ages up to 70, the ratios in Table B are shown graphically in Figure A.
11. The percentages in Table B and Figure A give broad picture of the secular trend of mortality from 1911 to 1971. The figures for ages 80 and 90 should, however, be treated with some reserve. Mortality a these older ages is much more affected than at younger ages by the incidence of epidemics or severe winter weather, so that even the experience of a three-yea period may differ considerably from the general trend 80. First, the data are relatively scanty; further, examination of the data suggests that there may be some misstatement of age in extreme old age and, finally, changes in the graduation method from one table to another may tend to distort the results at these very old ages.
12. The tables show that there has been great improvement in mortality over the period since 1911 and that, at every age and for both sexes, the 1970-72 death rates, as shown by the English Life Tables No. 13, are lower than the 1910-12 rates. The percentage improvement has, however, varied considerably. Over the 60 -year period the infant mortality rate has bee reduced to one sixth of its former level for both sexes; in

Table B Rates of mortality expressed as percentages of English Life Table No. 8 rates

Age	$\begin{aligned} & \text { ELT } 8 \\ & (1910-12) \end{aligned}$	$\begin{aligned} & \text { ELT 9 } 9 \\ & (1920-22) \end{aligned}$	$\begin{aligned} & \text { ELT 10 } \\ & (1930-32) \end{aligned}$	$\begin{aligned} & \text { ELT 11 } \\ & (1950-52) \end{aligned}$	$\begin{aligned} & \operatorname{ELT} 12 \\ & (1960-62) \end{aligned}$	$\begin{aligned} & \text { ELT 13 } \\ & (1970-72) \end{aligned}$
Males						
0 10	100 100	$\begin{aligned} & 75 \\ & 94 \end{aligned}$	$\begin{aligned} & 60 \\ & 76 \end{aligned}$	${ }_{27}^{27}$	20	16
20	100	100	91	37	34	30
30	100	91	71	33	24	20
40	100	85	69	36	29	28
50	100	80	76	57	49	50
60	100	84	79	78	75	68
70	100	93	93	87	86	86
80	100	98	101	95	89	84
90	100	98	104	107	93	88
Females						
0	100	71	56	26	19	16
10 20	100	92	68	18	12	12
$\begin{aligned} & 20 \\ & 30 \end{aligned}$	100 100	104 95	91 78	28 31	15 18	15 15
40	100	81	67	34	27	24
50	100	80	72	46	39	39
60	100	82	77	55	47	44
70	100	88	85	67	59	53
80	100	95	95	84	73	65
90	100	100	105	101	93	83

1910-12 out of every 100 babies born, 11 died before reaching their first birthday, but by 1970-72 the number dying had been reduced to less than two.
13. For females, a similar reduction is found at all ages up to 30 and, though the percentage improvement lessens with age thereafter, it has been at least 50 per rent until age 60 and ber it 35 . Even at age 80 , death there is evidence of improvement up to the oldest ages For males, except in infancy improvement at every age has been less than for females. Even so, mortality rates for males in 1970-72 were less than 50 per cent of the $1910-12$ rates up to age 50 and even at ages over 70 , where improvement has been slowest, death rates have fallen by about 15 per cent.
14. As was indicated in my predecessor's report on the 1960-62 Life Tables, female mortality was improving more rapidly than male mortality during the period from 1931 to 1961, although this feature had not been evident in the years 1911 to 1931. Between 1961 and 1971, the difference in pace seems largely to have disappeared and, taking all ages together, the degree of improvement for the two sexes has been broadly the same over the decade, except at ages over 70
15. The changes between 1961 and 1971 are examined in more detail in Table C, in which the 1970-72 rates at every fifth age are expressed as percentages of the 1960-62 rates. Table C also gives, for both 1960-62 and 1970-72, the ratio of male mortality rates to female rates at the same age.
16. In the previous decennium, 1951 to 1961, mortality rates improved at all ages and for both sexes, but this was not the case between 1961 and 1971, for for women small increases over the decade in the rates rates), at age 45 for men and at age 50 for both sexes. In

Table C 1970-72 rates of mortality as percentages of $1960-62$ rates $\begin{array}{ll}\text { Age } & \begin{array}{c}\text { 1970-72 as percentage } \\ \text { of } 1960-62\end{array}\end{array} \begin{aligned} & \text { Male mortality rates as } \\ & \text { percentages of female rates }\end{aligned}$

	Males	Females	1960-62	1970-72
0	81	80	129	130
5	82	81	136	138
10	87	96	162	148
15	95	97	197	193
20	89	102	270	236
25	89	83	183	196
30	84	80	153	162
35	86	82	136	144
40	96	89	131	141
45	104	99	140	148
50	102	102	166	165
55	94	99	195	185
60	91	94	210	202
65	95	91	202	210
70	100	90	179	199
75	98	89	157	173
80	94	88	140	150
85	93	88	127	134
90	94	90	116	122

general, however, improvement continued between 196 and 1971, though at most ages it was less rapid than in the previous decade. The greatest improvement was in infant mortality where the 1970-72 rates were one fifth lower than those in 1960-62. The general pather was a decline averaging about 40 with litte change in the rates at ages 45 to 55. From age 60 onward, the experience of the two sexes tended to diverge; the improvement for men averaged less than 5 per cent, with very little improvement at all at ages 70 and 75 , whereas the improvement for women was about 10 per cent. Bearing in mind the general level of mortality rates at these older ages, this 10 per cent improvement for women represented a substantial fall in the rates; for example at age 80 , the rate has diminished from 9 per cent to 8 per cent.
17. As the final column of Table C shows clearly, male
mortality was heavier than female mortality in 1970-72 at all ages. The excess male mortality ranged from 30 per cent in infancy to 110 per cent at age 65, with an isolated peak of 136 per cent at age 20 . The mortality ates for women at ages 60 to 75 were, in general, no higher than those of men seven years younger. The maximum male: female ratio (apart from the value at ge 20) is at age 65 and 2.10 is the same as the 60 . in 1950-52 the maximum was 1.86 at age 60 . Men's mortality rates are now at least 50 per cent higher than hose for women of the same age at all ages from 50 to those
80.
18. Tables such as the English Life Tables represent a napshot of the mortality of the community at a particular point of time; they do not purport to show he likely experience of any particular generation. In pite of relating to a snapshot, however, expectations of ife form as convenient a measure as any other of the overall effects of changes in mortality. Table D sets out expectations of life as compiled from English Life Tables Nos. 8, 10, 11, 12 and 13.
19. Over the 60 years covered by Table D, the expectation of life at birth has increased by $171 / 2$ years or a boy and almost 20 years for a girl. Of this is less than one year for a boy and only $11 / 4$ years for a sirl. On the 1970-72 experience the expectation is 69 years for a boy and $75^{1 / 4}$ years for a girl. A large part of the improvement since 1911 has been due to reductions in mortality in infancy, but this is not the only cause, as is shown by the fact that the expectation of a man of 20 has increased by nearly seven years and of a woman of 20 by nearly 10 years. The greater improvement for women is very noticeable; over the 60 years the female expectation at age 60 has increased by $41 / 2$ years, but that for men of 60 by only $12 / 3$ years. It may be mentioned that the expectation of life of a woman at the state pension age of 60 was almost 20 years in 1971; for man of 65 , the male was little more than 12 years.

Table D Expectations of life (${ }^{\circ} \mathbf{x}_{\mathrm{X}}$)

$\overline{\text { Age }}$	ELT 8 (1910-12)	$\begin{aligned} & \hline \text { ELT 10 } \\ & (1930-32) \end{aligned}$	$\begin{aligned} & \hline \text { ELT 11 } \\ & (1950-52) \end{aligned}$	ELT 12	$\begin{aligned} & \hline \text { ELT 13 } \\ & (1970-72) \end{aligned}$
Males					
10	53.08	55.79	59.24	60.21	60.74
20	44.21	46.81	49.64	50.57	51.08
30	35.81	38.21	40.27	41.06	41.51
40	27.74	29.62	30.98	31.62	32.01
50	20.29	21.60	22.23	22.68	23.11
60	13.78	14.43	14.79	15.06	15.41
70	8.53	8.62	9.00	9.29	9.50
Females					
,	55.35	62.88	71.54	74.00	75.25
10	55.91	58.87	63.87	65.77	66.71
20	47.10	49.88	54.17	55.95	56.89
30	38.54	41.22	44.68	46.23	47.13
40	30.30	32.55	35.32	36.69	37.52
50	22.51	24.18	26.34	27.57	28.41
60	15.48	16.50	18.07	19.11	19.98
	9.58	10.02	10.97	11.78	12.56

Mortality rates according to marital condition

20. Both the 1971 Census population and the deaths registered in 1970, 1971 and 1972 have been tabulated according to marital condition. Not all registrations of deaths record the marital condition; this information was not available for 1.1 per cent of male deaths during five-year age-group for either sex did the proportion of deaths where the marital condition was not stated exceed 3 per cent. This is an appreciable improvement on the position in 1960-62, when 16.4 per cent of male deaths in the 20-24 age-group were recorded as 'marital condition not stated'. In the analysis below of mortality according to marital condition the 'not stated' cases have been allotted rateably to the various marita conditions. It must of course be remembered that the validity of such an analysis depends on the reliability of the statements of marital condition in the census schedules and the death registers, but there is no reason to believe that misstatements are frequent enough to vitiate the tables shown below.
21. From the census population and the 1970-72 deaths, pivotal values of the mortality rates at ages 22 deaths, pivotal values of the mortality rates at ages 27,32 and so on were calculated for all men, for women and for each marital condition. Rates for men are given in Table E and those for women in Table F. No value are inserted in the tables where the number of deaths in the three years was less than 100 ; in some other group the numbers are so small that the rates given are subject

Table E 1970-72 rates of mortality per according to marital condition

${ }_{\text {Age }}$	$\begin{aligned} & \text { All } \\ & \text { men } \end{aligned}$	Single men	Married men	Widowers	Divorced men
22	1.0	1.2	0.6		
27	0.9	1.6	0.7		
32	1.1	2.2	0.9		2.2
37	1.6	3.3	1.4		3.6
42	2.9	5.0	2.6	5.1	5.6
47	5.3	8.4	4.8	9.5	9.8
52	9.1	13.7	8.4	14.3	15.6
57	15.2	20.2	14.3	22.6	24.3
62	25.5	32.0	24.0	36.7	37.2
67	42.2	47.6	39.9	56.2	55.3
72	66.1	70.3	62.4	79.8	82.6
77	97.3	102	90.8	112	113
82	139	140	128	154	146
87	203	192	185	216	

Table F 1970- 72 rates of mortality per thousand $\left(10^{3} Q_{1}\right.$) for wome according to marital condition

$\begin{aligned} & \overline{\text { Age }} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { All } \\ & \text { women } \end{aligned}$	Single women	Married women	Widows	$\begin{aligned} & \text { Divorced } \\ & \text { women } \end{aligned}$ women
22	0.4	0.6	0.3		
27	0.5	1.1	0.4		
32	0.7	1.5	0.6		1.1
37	1.2	2.0	1.0		2.0
42	2.0	3.3	1.8		2.7
47	3.5	4.8	3.2	4.8	5.0
52	5.3	6.9	5.0	6.4	6.4
57	7.9	9.4	7.4	9.2	9.2
62	12.3	13.6	11.5	13.9	14.3
67	20.3	20.6	19.0	22.1	22.8
72	34.6	34.9	32.4	36.4	37.7
77	59.6	57.9	54.4	62.1	70.9
82	97.6	95.2	88.3	100	115
87	157	153	134	160	192

to considerable margins of statistical error. It should be noted that the values given for all men and all women do not agree exactly with the pivotal values given in Appendix III; the differences are due to the use of the unadjusted census population as a denominator in this section of the report, whereas in Appendix III the population used was the 'exposed to risk' (see Appendix I).
22. In the corresponding section of the report on the Life Tables for 1960-62, widowers and divorced men were treated as one category. The characteristics of the two groups are, however, likely to differ and they have been treated separately on this occasion. Similarly separate figures are now given for widows and divorced women.
23. At all ages and for both sexes, the mortality rates for married persons are lighter than those for other members of the same sex, often by a large margin. For men, mortality rates for widowers and the divorced are heavier than for bachelors. Similarly, for women, spinsters appear to have lighter rates than do widow and whole, smaller than for men. These differences between Table \mathbf{G} 1970- 72 mortality rates for single, widowed and divorced as
percentages of those for married Age Men

death rates for the various marital conditions are brought out in Table G which shows the rates for the single, widowed and divorced as percentages of those for married persons.
24. Looking first at men, the mortality rates for bachelors are double or more the rates for married men at ages up to 45 . Though the excess decreases thereafter, it is still substantial, being one third at age 62 and more spinsters is, at almost all . The excess mortality of mortality of bachelors, but again at ages 27 and 32 the single women's rate is well over double that for married women; the excess has fallen to 18 per cent at age 62 and is less than 10 per cent after age 65 . These differences, particularly at the younger ages, must be in large measure due to the selective effect of marriage. There is likely to be a higher proportion with impairment of health amongst those remaining unmarried.
25. Widowers and divorced men experience even heavier mortality rates than bachelors; again, some part of the excess may be due to selection, since those who are healthy are more likely to remarry. At all ages widowers experience mortality rates at least 20 per cen higher than those for married men and the excess is o be little overall difference between the mortality widowers and divorced men.
26. The differences are again less in the case of women nd the excess of widows' mortality over that of married women is less than 20 per cent at age 67 and less than 15 per cent at higher ages. At almost all ages the excess mortality of divorced women is greater than that of widows.

EA J Johnston

Government Actuary's Department London SW1H 9LS
October 1978

Appendix I Calculation of the 'exposed to risk' for the years 1970-72

1. The census was taken on the night of 25/26 April 1971, or 0.315 years after the beginning of 1971 . If one considers the enumerated population at age x last spread of birthdays over the year $0.315 \mathrm{P}_{\mathrm{x}}$ were aged between $x-1.315$ and $x-1$ on 1 January 1970 and $0.685 \mathrm{P}_{\mathrm{x}}$ were aged between $\mathrm{x}-1$ and $\mathrm{x}-0.315$ on that date. Ignoring mortality and migration, each person in the first group would on average have been exposed to risk in the period 1970-72 for the following periods:

> At age $x-2$ last birthday:
> 0.1575 years
(ie $1 / 2$ of 0.315) (ie $1 / 2$ of 0.315)
> At age $x-1$ last birthday
> At age x last birthday:
> At age $x+1$ last birthday: 1 year 0.8425 years (ie the average of durations 0.685 to 1)

This is a total of three years, as it clearly should be.
Similarly, the second group would on average have been exposed for the following periods:

At age $\mathrm{x}-1$ last birthday:	0.6575 years (ie the average of durations ranging from 1 to
	0.315)
At age x last birthday:	1 year
At age $\mathrm{x}+1$ last birthday:	1 year
At age $\mathrm{x}+2$ last birthday:	0.3425 years
(ie $1 / 2$ of 0.685)	

2. Thus the enumerated population P_{x} were exposed to risk for the following periods in years

At age $x-2$ last birthday: $\quad 0.04961 \mathrm{P}$
At age $x-1$ last birthday:
At age x last birthday:
At age $\mathrm{x}+1$ last birthday:
At age $\mathrm{x}+2$ last birthday:
.04961 P
0.315×0.1575
$0.76539 \mathrm{P}_{\mathrm{x}}$
$0.76539 \mathrm{P}_{\mathrm{x}}$
$0.315+0.68$
$\left.0.315+0.685_{1 \times 8} 0.6575\right)$
$1.00000 \mathrm{P}_{\mathrm{x}}$ ($0.315+0.685$) $0.95039 \mathrm{P}_{\mathrm{x}}$ $(0.315 \times 0.8425+0.685)$ $0.23461 \mathrm{P}_{\mathrm{x}}$
$(0.685 \times 0.342$
$3.00000 \mathrm{P}_{\mathrm{x}}$

It follows from this that the 'exposed to risk' for 1970-72 at age x last birthday, ignoring deaths and migration, is:
$0.04961 \mathrm{P}_{\mathrm{x}+2}+0.76539 \mathrm{P}_{\mathrm{x}+1}+\mathrm{P}_{\mathrm{x}}+$
$0.95039 \mathrm{P}_{\mathrm{x}-1}+0.23461 \mathrm{P}_{\mathrm{x}-2}=\mathrm{A}_{\mathrm{x}}$ say
3. A_{x} is not the true 'exposed to risk', because it assumes that all those enumerated in the census formed part of the population for the whole of the three years 1970-72 and that no other persons contributed to the 'exposed to risk'. An addition has to be made for those who died between 1 January 1970 and the census date, but are not part of the census population; on the other hand, a deduction has to be made for those enumerated at the census but who died before the end of 1972 and therefore did not contribute to the 'exposed to risk' for the full three years.
4. The method of adjusting for the deaths in the period 1970-12 may be illustrated by reference to the deaths in 1970. Of the deaths in that year at age x las birthday, some were aged $x-1$ and some were aged x last birthday on 1 January 1970. Of deaths at time years after the beginning of the year (when t is less than 1), the proportion aged x last birthday on 1 January may be taken as $1-\mathrm{t}$ and for each such death the last birthday. Similarly, the proportion aged $x-1$ en January would be t, the ages at that date ranging from $x-t$ to x; thus, of the additional years of exposure for such deaths, $\frac{1}{2}$, on average, relates to age $x-1$ and $\frac{1}{2}$ t to age x . The additional exposure per death at age x last birthday in 1970 is therefore:

At age $\mathrm{x}-1: \quad \int_{0^{2}}^{\frac{1}{2}{ }^{2} \mathrm{dt}}=\frac{1}{6}$ years

At age $\mathrm{x}: \quad \int_{0}^{1} \mathrm{t}(1-\mathrm{t}) \mathrm{dt}+\int_{0}^{1 \frac{1}{2} t^{2}} \mathrm{dt}=\frac{1}{3}$ years
Thus if the deaths in 1970 at age x are θ_{x}^{70}, he adjustment to the 'exposed to risk' at age x for deaths in 1970 is $\frac{1}{6} \theta_{x+1}^{70}+\frac{1}{3} \theta_{x}^{70}$
5. Similar methods applied to the deaths in other years, led to the following formula for the adjustment to A_{x} to obtain the 'exposed to risk'

$$
\frac{1}{6} \theta_{x+1}^{70}+\frac{1}{3} \theta_{x}^{70}+.017 \theta_{x+2}^{712 a}+.641 \theta_{x+1}^{712 a}+\frac{1}{2} \theta_{x}^{712}-\frac{1}{2} \theta_{x}^{716}
$$

$-.764 \theta_{x-1}^{7 \mathrm{lb}}-.078 \theta_{x-2}^{7 \mathrm{lb}}-\frac{1}{3} \theta_{x}^{72}-\frac{1}{6} \theta_{x-1}^{72}$
6. In theory, there should be a further adjustment for migration, but statistics of migration were not available in enough detail for this to be done. It is believed, however, that the resulting error is relatively small.

Appendix II

Table II.1 Crude central rates of mortality ($\mathbf{m}_{\mathbf{x}}$), 1970-72 England and Wales
Note: The method of Appendix I did not give the 'exposed to risk'

$\overline{\text { Age }}$	Males			Females		
	Exposed to risk (1)	Deaths $1970-72$ (2)	$\begin{aligned} & \mathrm{m}_{\mathrm{x}} \\ & =(2) \div(1) \\ & (3) \end{aligned}$	Exposed to risk (1)	$\begin{aligned} & \text { Deaths } \\ & \text { 1970 } 72 \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & m_{x} \\ & =(2) \div(1) \\ & (3) \end{aligned}$
2	1191743	957	. 00080	1132886	761	. 00067
3	1211605	759	. 00063	1150786	599	. 00052
4	1232567	634	. 00051	1169813	482	. 00041
5	1254028	579	. 00046	1189876	413	. 00035
6	1261948	589	. 00047	1198630	362	. 00030
7	1255220	519	. 00041	1192521	319	. 00027
8	1236213	456	. 00037	1173991	303	. 00026
9	1211189	436	. 00036	1147993	288	. 00025
10	1180077	396	. 00034	1116294	266	. 00024
11	1149807	384	. 00033	1086925	217	. 00020
12	1122522 1099146	368 411	$\begin{array}{r} .00033 \\ .00037 \end{array}$	1061235 1038203	$\begin{aligned} & 240 \\ & 225 \\ & 225 \end{aligned}$	$\begin{aligned} & .00023 \\ & .00022 \end{aligned}$
13 14	$\begin{aligned} & 1099146 \\ & 1073505 \\ & 1 \end{aligned}$	$\begin{aligned} & 411 \\ & 473 \end{aligned}$	$\begin{aligned} & .00037 \\ & .00044 \end{aligned}$	$\begin{aligned} & 1038203 \\ & 1012107 \end{aligned}$	$\begin{aligned} & 225 \\ & 239 \end{aligned}$	$\begin{aligned} & .00022 \\ & .00024 \end{aligned}$
15	1046519	536	. 00051	985408	281	. 00029
16	1031388	837	. 00081	972530	351	. 000336
17	1021084	1058	. 00104	969511	406	. 00042
18 19	1014114	1049 1091	.00103 . 00108	973756 982299	$\begin{aligned} & 386 \\ & 435 \end{aligned}$. 000040
20	1023106	1093	. 00107	1004524	478	. 00048
21	1053824	1119	. 00106	1040348	447	. 00043
22	1107406	1096	. 000999	1097042	498	. 000045
23	1167428	1113	. 000095	1156110	511 485	. 00044
24	1152600	943	. 00082			. 00043
25	1098575	956	. 00087	1083853	492	. 000045
26	1023420	935	. 00091	1006104	477	. 00047
27	${ }_{9}^{9967636}$	993 828	.00092 .00087	$\begin{aligned} & 975650 \\ & 930862 \end{aligned}$	$\begin{aligned} & 464 \\ & 472 \end{aligned}$	$\begin{aligned} & .00048 \\ & .00051 \end{aligned}$
28 29	953636 901666	$\begin{aligned} & 828 \\ & 808 \end{aligned}$	$\begin{aligned} & .00087 \\ & .00090 \end{aligned}$	930862 877499	$\begin{aligned} & 472 \\ & 510 \end{aligned}$. 000051
30	872172	864	. 00099	846834	520	. 00061
31	873149	927	. 0106	845802	517	. 00061
32	885631	961	. 00109	856468	615	. 00072
33	884387	989	. 00112	854016	${ }_{6} 678$. 000079
34	875516	1057	. 00121	845984	697	. 00082
35	862662	1207	. 00140	835646	742	. 00089
36	${ }^{846631}$	1296	. 00153	${ }_{818561}^{82363}$	885	. 000104
37 38	${ }_{842115}^{83613}$	1336 1437	. 000159	${ }_{824567}^{81851}$	970 1053	. 0001198
39	859650	1693	. 00197	846323	1199	. 00142
40	872204	1961	. 00225	865798	1422	. 00164
41	876636	2223	. 00254	876944	1572	. 000179
42	873230	2573	. 002935		1738	. 000228
43 44	879039 891111	2915 3270	. 0003367	880245 891520	2007 2199	. 0022247
45	903355	3829	. 00424	907287	2535	.0027y
46	910739	4287	. 00471	920946	2817	. 00306
47	917556	4765	. 00519	936324	3305	. 00353
48	${ }_{9}^{941929}$	5513	. 00585	968595	${ }_{4}^{3682}$. 003880
49	977703		. 00673	1011647	4194	. 00415

$\overline{\mathrm{Age}}$	Males			Females		
	Exposed to risk (1)	$\begin{aligned} & \text { Deaths } \\ & \text { 1970-72 } \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & \mathrm{m}_{\mathrm{x}}=(2) \div(1) \\ & (3) \\ & (3) \end{aligned}$	Exposed to risk (1)	$\begin{aligned} & \text { Deaths } \\ & \text { 1970-72 } \\ & (2) \end{aligned}$	$\begin{aligned} & \mathrm{m}_{\mathrm{x}}^{\prime} \\ & =(2) \div(1) \\ & (3) \end{aligned}$
50	998894	7552	. 00756	1038147	4693	. 00452
51	931794	7585	. 00814	975493	4806	. 00493
52	823841	7492	. 00909	867867	4756	. 00548
53	751477	7618	. 01014	796402	4498	. 00565
54	763587	8821	. 01155	809995	4966	. 00613
55	822503	10480	. 01274	876186	5877	. 00671
56	858503	11840	. 01379	919781	6606	. 00718
57	874768	13338	. 01525	942453	7649	. 00812
58	864908	14641	. 01693	934924	8192	. 00876
59	848975	16211	. 01909	927439	8740	. 00942
60	834709	17508	. 02097	922363	9697	. 01051
61	822865	19079	. 02319	921792	10181	. 01104
62	804962	20813	. 02586	911167	11301	. 01240
63	780114	22031	. 02824	895554	12293	. 01373
64	747831	24059	. 03217	874284	13131	. 01502
65	714359	25415	. 03558	854817	14116	. 01651
$\begin{aligned} & 66 \\ & 67 \end{aligned}$	${ }_{6447123} 6$	26173	. 03852	833950	14867	. 01783
68	604672	${ }_{28336}$. 044686	8179349	16726	. 0202051
69	563082	29479	. 052385	754709	17697 19135	. 0222731
70	516090	29672	. 05749	727181	20600	. 02833
71	465134	28815	. 06195	695145	21537	. 03098
72 73	413421 36934	28110	. 06799	651727	23213	. 03562
74	332709	26516	. 0797970	612499 57970	$\begin{aligned} & 24167 \\ & 25393 \end{aligned}$	$\begin{aligned} & .03946 \\ & .04393 \end{aligned}$
75	302104	26168	. 08662	544906	26713	. 04902
76	272462	25563	. 093882	506871	27864	. 05497
78	${ }_{224644}^{2426}$	${ }_{24238}^{24888}$.10078 .1049	468881 430226	28281	. 060472
79	196772	23357	. 11870	395125	${ }_{29968}$. 077884
80	172956	22117	. 12788	360980	30396	. 08420
81	151378	20380	. 13463	330701	29980	. 09066
82	130567	19538	. 14964	297591	30437	. 10228
83	110226	17569	. 15939	262874	29742	. 11314
84	91688	16323	. 17803	226578	28373	. 12522
85	75619	14582	. 19284	194300	27003	13898
86	${ }_{6}^{61705}$	12698	. 20579	164403	25703	. 15634
87	49933	${ }^{11097}$. 222439	136853	22779	:16645
88 89	38927 30542	9263 7833	$\begin{aligned} & .23796 \\ & .25647 \end{aligned}$	111988 91129	20657 18234	.18446 .20009
90	23318	6275	. 26911	72412	15684	. 21659
91	17175	4982	. 29007	54986	12945	. 23542
92	11966	3868	. 32325	39973	10795	. 27006
93	8328	2764	. 33189	28842	8498	. 29464
94	5734	2166	. 37775	20919	6462	. 30891
95	3857	1467	. 38035	14926	4965	. 33264
96	2541	996	. 39197	10166	3558	. 34999
97	1638	625	. 38156	6816	2331	. 34199
98 99	1116	424	.37993 .31518	4687 3283	1652	. 35246
100			. 31518	3283	1017	. 30978
and over	1487	283	. 19032	6019	1597	. 26533

$\overline{\mathrm{Age}}$	1960-62		1970-72		$\begin{aligned} & \text { Ratio of } \\ & \mathrm{m}_{\mathrm{x}}(1970-72) \\ & \text { to } 1960-62 \\ & \text { rate } \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \mathrm{x} \end{aligned}$	1960-62		1970-72		$\begin{aligned} & \text { Ratio of } \\ & \mathbf{m}_{\times}(1970-72) \\ & \text { to } 1960-62 \end{aligned}$rate
	Pivotal value of m_{x}	$\frac{m_{x+5}}{m_{x}}$	Pivotal value of m_{x}	$\frac{m_{x+5}}{m_{x}}$			$\begin{aligned} & \text { Pivotal } \\ & \text { value of } \\ & \mathrm{m}_{\mathrm{x}} \end{aligned}$	$\frac{m_{x}+s}{m_{x}}$	Pivotal value of m_{x}	$\frac{m_{x+5}}{m_{x}}$	
$\overline{\text { Males }}$						$\overline{\text { Females }}$					
27	. 00099	1.21	. 00088	1.22	0.89	27	. 00060	1.45	. 00049	1.44	0.82
32	. 00120	1.54	. 00108	1.49	0.90	32	. 00087	1.55	. 00070	1.62	0.80
37	. 00185	1.59	. 00161	1.80	0.87	37	. 00135	1.59	. 00114	1.76	0.84
42	. 00295	1.76	. 00290	1.84	0.98	42	. 00214	1.60	. 00201	1.73	0.94
47	. 00520	1.76	. 00532	1.70	1.02	47	. 00344	1.55	. 00347	1.51	1.01
52	. 00914	1.84	. 00996	1.71	0.99	52	. 00530	1.53	. 00525	1.52	0.99
57	. 01679	1.69	. 01545	1.67	0.92	57	. 00812	1.67	. 00799	1.55	0.98
62	. 02833	1.56	. 02584	1.66	0.91	62	. 01356	1.66	. 01241	1.64	0.92
67	. 04406	1.54	. 04290	1.58	0.97	67	. 02253	1.75	. 02035	1.73	0.90
72	. 06804	1.55	. 06760	1.50	0.99	72	. 03932	1.75	. 03520	1.73	0.90
77	. 10516	1.52	. 10149	1.46	0.97	77	. 06889	1.71	. 06092	1.68	0.88
82	. 15963	1.51	. 14844	1.50	0.93	82	. 11767	1.62	. 1028	1.65	0.87
87	. 24091	1.45	. 22295	1.41	0.93	87	. 19103	1.55	. 16803	1.56	0.88

Table III. 2 Comparison of actual and expected deaths

$\overline{\text { Age }}$	Males			Females		
	Actua deaths 1970-72 (A)	Expected deaths using graduated m (E)	A-E	$\begin{aligned} & \text { Actual } \\ & \text { deaths } \\ & 1970-72 \\ & \text { (A) } \end{aligned}$	Expected deaths using graduated m_{x} (E)	A-E
2	957	963	- 6	761	759	${ }^{2}$
4	759 634	754 640	$\begin{array}{r}5 \\ -\quad 6 \\ \hline\end{array}$	$\begin{aligned} & 599 \\ & 482 \end{aligned}$	600 485	$-\quad 1$ $-\quad 3$
5	579	587	- 8	413	408	5
6	589	555	34	362	360	
7	519	519	0	319	329	- 10
8	456	478	- 22	303	305	- 2
9	436	439		288	280	8
10	396	402	6	266	255	11
11	384	375	9	${ }_{2} 217$	${ }^{236}$	- 19
12	368	371	- 3	240	226	14
13	411	399	12	${ }^{225}$	${ }_{2}^{229}$	- 4
14	473	466	7	239	249	- 10
15	536	585		281	287	
16	837	777	60	351	336 383	
17	1058	1058	0 $-\quad 47$	406	383 418	- $\begin{array}{r}23 \\ -\quad 32 \\ \hline\end{array}$
18	1049	1096 1097	- 47	386 435	440	[5
	1091					
20	1093	1088	5	478	455	23
21	1119	1080	39	447	468	- 21
22	1096	1085	11	498	485	13
23	1113	1096	17	511	504 500	- 15
24	943	1043	- 100	485	500	- 15
25	956	967		492	486	${ }_{8} 8$
26	935	889	46	477	469	
27	913 828	869 850	$\begin{array}{r}44 \\ -\quad 22 \\ \hline\end{array}$	464 472	478	$\begin{array}{r}\text { - } 14 \\ -\quad 13 \\ \hline\end{array}$
${ }_{29}^{28}$	828 808	${ }_{835}^{850}$		510	489	21
30	864	847	17	520	507	13
31	927	897	30	517	547	- 30
32	961	964		615	${ }_{6} 60$	14
33	989	1025	- 36	678	654	$\begin{array}{r}24 \\ 15 \\ \hline\end{array}$
34	1057	1086	- 29	697	712	- 15

Table III. 2 continued						
$\begin{aligned} & \overline{\text { Age }} \\ & \mathrm{x} \end{aligned}$	Males			Females		
	$\begin{aligned} & \text { Actual } \\ & \text { deaths } \\ & 1970-72 \\ & \text { (A) } \end{aligned}$ (A)	Expected deaths using graduated m_{x} (E)	A-E	Actual deaths 1970-72 (A)	Expected deaths using graduated \mathbf{m}_{x}^{1} (E)	A-E
35 36 37 38 39	$\begin{aligned} & 1207 \\ & 1296 \\ & 1336 \\ & 1437 \\ & 1693 \end{aligned}$	$\begin{aligned} & 1155 \\ & 1238 \\ & 1351 \\ & 1590 \\ & 1729 \end{aligned}$	$\begin{array}{r} 51 \\ 58 \\ -\quad 15 \\ -\quad 72 \\ -\quad 33 \end{array}$	$\begin{array}{r} \hline 742 \\ 853 \\ 970 \\ 1053 \\ 1199 \end{array}$	$\begin{array}{r} 776 \\ 848 \\ 937 \\ 1074 \\ 1254 \end{array}$	$\begin{array}{r} \quad 34 \\ -\quad 5 \\ -\quad 33 \\ -\quad 1 \\ -\quad 11 \end{array}$
$\begin{aligned} & 40 \\ & 41 \\ & 42 \\ & 43 \\ & 44 \end{aligned}$	$\begin{aligned} & 1961 \\ & 2223 \\ & 2573 \\ & 2915 \\ & 3270 \end{aligned}$		$\begin{array}{r} 10 \\ -\quad 14 \\ -\quad 53 \\ -\quad 44 \\ -\quad 21 \end{array}$	$\begin{aligned} & 1422 \\ & 1572 \\ & 1738 \\ & 2007 \\ & 2199 \end{aligned}$	$\begin{aligned} & 1388 \\ & 1578 \\ & 1768 \\ & 1992 \\ & 2254 \end{aligned}$	$\begin{array}{r} 34 \\ -\quad 6 \\ -\quad 30 \\ -\quad 15 \\ -\quad 55 \end{array}$
$\begin{aligned} & 45 \\ & 46 \\ & 47 \\ & 48 \\ & 49 \end{aligned}$	$\begin{aligned} & 3829 \\ & 4287 \\ & 4765 \\ & 5513 \\ & 6583 \end{aligned}$	$\begin{aligned} & 3767 \\ & 4280 \\ & 4850 \\ & \hline 5586 \\ & 6491 \end{aligned}$	$\begin{array}{r} 62 \\ -\quad 7 \\ -\quad 75 \\ -\quad 93 \end{array}$	$\begin{aligned} & 2535 \\ & 2817 \\ & 3305 \\ & 3682 \\ & 4194 \end{aligned}$	$\begin{aligned} & 2553 \\ & 2871 \\ & 3219 \\ & 3655 \\ & \hline 6175 \end{aligned}$	$\begin{array}{r} 18 \\ -\quad 54 \\ -\quad 86 \\ \quad 27 \\ 19 \end{array}$
$\begin{aligned} & 50 \\ & 51 \\ & 52 \\ & 53 \\ & 54 \end{aligned}$	$\begin{aligned} & 7555 \\ & 7585 \\ & 7492 \\ & 7618 \\ & 8821 \end{aligned}$	$\begin{aligned} & 7408 \\ & 7703 \\ & 7575 \\ & 7674 \\ & \hline 6651 \end{aligned}$	$\begin{array}{r} 144 \\ -118 \\ -\quad 83 \\ -\quad 56 \\ -170 \end{array}$	$\begin{aligned} & 4693 \\ & 4806 \\ & 4756 \\ & 4498 \\ & 4996 \end{aligned}$	$\begin{aligned} & 4672 \\ & 4778 \\ & 478 \\ & 4618 \\ & 4598 \\ & 5069 \end{aligned}$	$\begin{array}{r} 21 \\ 28 \\ -138 \\ -100 \\ -103 \end{array}$
$\begin{aligned} & 55 \\ & 56 \\ & 57 \\ & 58 \\ & 59 \end{aligned}$	$\begin{aligned} & 10480 \\ & 11840 \\ & 13338 \\ & 14641 \\ & 16211 \end{aligned}$	$\begin{aligned} & 10331 \\ & 11948 \\ & 13483 \\ & 14764 \\ & 16056 \end{aligned}$	$\begin{array}{r} 149 \\ -108 \\ -145 \\ -123 \\ -155 \end{array}$	$\begin{aligned} & 5877 \\ & 68069 \\ & \hline 684929 \\ & 87740 \end{aligned}$	$\begin{aligned} & 5943 \\ & 6766 \\ & 7526 \\ & 8116 \\ & 8765 \end{aligned}$	$\begin{array}{r} -\quad 66 \\ -\quad 160 \\ 123 \\ -\quad 76 \\ -\quad 25 \end{array}$
$\begin{aligned} & 60 \\ & 61 \\ & 62 \\ & 63 \\ & 64 \end{aligned}$	$\begin{aligned} & 17508 \\ & 19079 \\ & 20813 \\ & 22031 \\ & 24059 \end{aligned}$	$\begin{aligned} & 17499 \\ & 19130 \\ & 20759 \\ & 22314 \\ & 23716 \end{aligned}$	$\begin{array}{r} 9 \\ -\quad 51 \\ -\quad 54 \\ -\quad 343 \\ \hline 34 \end{array}$	$\begin{array}{r} 9697 \\ 10181 \\ 11301 \\ 12293 \\ 13131 \end{array}$	$\begin{array}{r} 9504 \\ 10381 \\ 11247 \\ 12154 \\ 13084 \end{array}$	$\begin{array}{r} 193 \\ -\quad 200 \\ 54 \\ 139 \\ 47 \end{array}$
$\begin{aligned} & 65 \\ & 66 \\ & 67 \\ & 68 \\ & 69 \end{aligned}$	$\begin{aligned} & 25415 \\ & 26173 \\ & 27485 \\ & 28336 \\ & 29479 \end{aligned}$	$\begin{aligned} & 25098 \\ & 2649 \\ & 27679 \\ & 28646 \\ & 29320 \end{aligned}$	$\begin{array}{r} 317 \\ -\quad 246 \\ -\quad 194 \\ -310 \\ -159 \end{array}$	$\begin{aligned} & 14116 \\ & 1487 \\ & 16726 \\ & 17967 \\ & 19135 \end{aligned}$	$\begin{aligned} & 14146 \\ & 15296 \\ & 16505 \\ & 17676 \\ & 19084 \end{aligned}$	$\begin{array}{r} -30 \\ -\quad 429 \\ 221 \\ 21 \\ 51 \end{array}$
$\begin{aligned} & 70 \\ & 71 \\ & 72 \\ & 73 \\ & 74 \end{aligned}$	$\begin{aligned} & 29672 \\ & 28815 \\ & 28110 \\ & 27167 \\ & 26516 \end{aligned}$	$\begin{aligned} & 29436 \\ & 28955 \\ & 27998 \\ & 27142 \\ & 26507 \end{aligned}$	$\begin{array}{r} 236 \\ -140 \\ -112 \\ 25 \\ 9 \end{array}$	$\begin{aligned} & 20600 \\ & 21537 \\ & 23213 \\ & 24167 \\ & 25393 \end{aligned}$	$\begin{aligned} & 20525 \\ & 21916 \\ & 22956 \\ & 24099 \\ & 25397 \end{aligned}$	$\begin{array}{r} 75 \\ -\quad 379 \\ 257 \\ -\quad 68 \\ -\quad 4 \end{array}$
$\begin{aligned} & 75 \\ & 76 \\ & 77 \\ & 78 \\ & 79 \end{aligned}$	$\begin{aligned} & 26168 \\ & 25653 \\ & 24858 \\ & 2423 \\ & 23357 \end{aligned}$	$\begin{aligned} & 26061 \\ & 25434 \\ & 24908 \\ & 24170 \\ & 23261 \end{aligned}$	$\begin{array}{r} 107 \\ 129 \\ -\quad 50 \\ 53 \\ 96 \end{array}$	$\begin{aligned} & 26713 \\ & 27864 \\ & 28281 \\ & 29101 \\ & 29968 \end{aligned}$	$\begin{aligned} & 26720 \\ & 27711 \\ & 28497 \\ & 29129 \\ & 29719 \end{aligned}$	$\begin{array}{r} 7 \\ -\quad 153 \\ -216 \\ -\quad 28 \\ \hline 249 \end{array}$
80 81 82 83 84 84	$\begin{aligned} & 22117 \\ & 20380 \\ & 19538 \\ & 17569 \\ & 16323 \end{aligned}$	$\begin{aligned} & 22127 \\ & 20954 \\ & 19573 \\ & 17882 \\ & 16088 \end{aligned}$	$\begin{array}{r} 10 \\ -\quad 584 \\ -\quad 35 \\ -313 \\ -235 \end{array}$	$\begin{aligned} & 30396 \\ & 2990 \\ & 30437 \\ & 29742 \\ & 28373 \end{aligned}$	$\begin{aligned} & 30131 \\ & 30605 \\ & 30506 \\ & 29818 \\ & 28406 \end{aligned}$	265 $-\quad 625$ $-\quad 69$ $-\quad 76$ $-\quad 33$
$\begin{aligned} & 85 \\ & 86 \\ & 87 \\ & 88 \\ & 89 \end{aligned}$	$\begin{array}{r} 14582 \\ 12698 \\ 11097 \\ 9263 \\ 7833 \end{array}$	14340 12635 10940 9262 7819	$\begin{array}{r} 242 \\ 63 \\ 157 \\ 1 \\ 14 \end{array}$	$\begin{aligned} & 27003 \\ & 250703 \\ & 22779 \\ & 20657 \\ & 18234 \end{aligned}$	$\begin{aligned} & 26885 \\ & 25064 \\ & 22945 \\ & 20608 \\ & 18368 \end{aligned}$	$\begin{array}{r} 118 \\ 639 \\ -166 \\ -\quad 49 \\ -\quad 134 \end{array}$
$\begin{aligned} & 90 \\ & 91 \\ & 92 \\ & 93 \\ & 94 \end{aligned}$	$\begin{aligned} & 6275 \\ & \hline 982 \\ & \hline 986 \\ & 2864 \\ & 2764 \\ & \\ & \hline 166 \end{aligned}$	$\begin{aligned} & 6414 \\ & 5069 \\ & 3784 \\ & 2817 \\ & 2072 \end{aligned}$	$\begin{array}{r} 139 \\ -\quad 87 \\ -\quad 84 \\ -\quad 53 \\ -\quad 94 \end{array}$	15684 12945 10795 8498 6462	15955 13226 10487 8248 8248 6519	$\begin{array}{r} -\quad 271 \\ -\quad 281 \\ -\quad 308 \\ -\quad 57 \end{array}$
95	1467	1486	- 19	4965	5067	- 102

$\overline{\text { Age- }} \begin{aligned} & \text { group } \end{aligned}$	Actual deaths 1970-72 (A)	Expected deaths on basis of graduated (E)	$\begin{aligned} & \text { Deviation } \\ & \text { A-E } \end{aligned}$		$\begin{aligned} & \text { Accumulated } \\ & \text { deviation } \\ & \sum(\mathrm{A}-\mathrm{E}) \end{aligned}$	
			+	-	+	-
Males						
5-9	2579	2578	1		I	
10-14	2032	2013	19		20	
15-19	4571	4613		42		22
20-24	5364	5392		28		50
25-29	4440	4410	30			20
30-34	4798	4819		21		41
35-39	6969	6980		11		52
40-44	12942	12890	52		0	
45-49	24977	24974	3		3	
50-54	39068	39011	57		60	
55-59	66510	66582		72		12
60-64	103490	103418	72		60	
65-69	136888	137162		274		214
70.74	140280	140038	242		28	
75-79	124169	123834	335		363	
80-84	${ }_{5}^{95927}$	96634		707		344
-85-89	55473 20055	$\begin{aligned} & 54996 \\ & 20156 \end{aligned}$	477	101	${ }_{32}^{133}$	
Total	850532	850500	32			
Femal						
5-9	1685	1682	3		3	
10-14	1187	1195		8		10
15-19	1859	1864		5		10
20-24	2419	2412	7			3
25-29	2415	2407	8		5	
30-34	3027	3021	6		11	
35-39	4817	4825		8	3	
40-44	8938	8980		42		39
45-49	16533	16473	60		${ }^{21}$	
50-54	23719	23735		16	5	
55-59	37064	37116		52		47
60.64	56603	56370	233		186	
65-69	82541	82707		166	20	
70-74	114910	114893	17		37	
75-79	141927	141776	151		188	
80-84	148928	149466		538		350
85-89	114376	113870	506		156	
90-94	54384	54435		51	105	
Total	817332	817227	105			

${ }_{\text {Age }}{ }^{\text {a }}$	I_{x}	d_{x}	q_{x}	${ }^{\text {e }}$ x	Age x	I_{x}	d_{x}	q_{x}	${ }_{\text {¢ }} \times$
1	98020	117	. 00119	69.39	56	85646	1184	. 01382	18.32
2	97903	79	. 00081	68.47	57	84462	1292	. 01530	17.56
3	97824	61	. 00062	67.53	58	83170	1408	. 01693	16.83
4	97763	51	. 00052	66.57	59	81762	1532	. 01874	16.11
5	97712	46	. 00047	65.60	60	80230	1665	. 02075	15.41
6	97666	43	. 00044	64.64	61	78565	1805	. 02298	14.72
7	97623	40	. 00041	63.66	62	76760	1954	. 02546	14.06
	97583	38	. 00039	62.69	63	74806	2110	. 02821	13.41
9	97545	35	. 00036	61.71	64	72696	2270	. 03122	12.79
10	97510	33	. 00034	60.74	65	70426	2432	. 03453	12.18
11	97477	32	. 00033	59.76	66	67994	2594	. 03815	11.60
12	97445	32	. 00033	58.78	67	65400	2752	. 04208	11.04
13	97413	35	. 00036	57.80	68	${ }^{62648}$	2900	. 046299	10.50
14	97378	42	. 00043	56.82	69	59748	3033	. 05076	9.99
15	97336	55	. 00056	55.84	70	56715	3145	. 05546	9.50
16	97281	73	. 00075	54.87	71	53570	3235	. 06038	9.02
17	97208	101	. 00104	53.91	72	50335	3297	. 06551	8.57
18	97107	105	. 00108	52.97	73	47038	3335	. 07091	8.14
19	97002	106	. 00109	52.02	74	43703	3349	. 07662	7.72
20	96896	103	. 00106	51.08	75	40354	3337	. 08269	7.32
21	96793	99	. 00102	50.13	76	37017	3301	. 08918	6.93
22	96694	95	. 00098	49.19	77	33716	${ }^{3241}$. 09612	6.56
23	96599	91	. 00094	48.23	78	30475	3156	. 110357	$\stackrel{6.21}{587}$
24	96508	87	. 00090	47.28	79	27319	3048	. 11158	5.87
25	96421	85	. 00088	46.32	80	24271	2917	. 12019	5.54
26	96336	84	. 00087	45.36	81	${ }_{2} 1354$	2764	. 12944	5.23
27	96252	84	. 00087	44.40	82	18590	2591	. 13935	4.94
28	96168	86	. 00089	43.44	83	15999	2398	. 14990	4.66
29	96082	89	. 00093	42.48	84	13601	2191	. 16110	4.39
30	95993	93	. 00097	41.51	85	11410	1973	. 17293	4.14
31	95900	99	. 00103	40.55	86	9437	1749	. 18538	3.90
32	95801	104	. 000109	39.60 38.64	87	7688	1525	. 119842	3.68 3.47 3.4
33 34	${ }_{95586}^{95697}$	111 119	.00116 .00124	$\begin{aligned} & 38.64 \\ & 37.68 \end{aligned}$	88 89	6163 4856	1307 1098	.21202 .22615	3.47 3.28
34	95886	119	. 00124	37.68	89	4856			
35	95467	128	. 00134	36.73	90	3758	905	. 24077	3.09
36	95339	139	. 00146	35.78	91	2853	730	. 257586	2.92
37	95200	153	. 00161	34.83	92	2123	576	. 27137	2.76
38	95047	170	. 00179	33.88	93	1547	434	. 287226	2.61
39	94877	191	. 00201	32.94	94	1103	335	. 30348	2.47
40	94686	214	. 00226	32.01	95	768	246	. 31999	2.34
41	94472	241	. 00255	31.08	96	522	176	. 33675	${ }^{2.22}$
42	94231	271	. 00288	30.16	97	346	122	. 35371	2.10
43	93960	306	. 00326	29.24	98 99	${ }_{121}^{224}$	83 55	.37083 .38804	${ }_{1}^{2.00}$
44	93654	346	. 00369	28.34	99	141	55	. 38804	
45	93308	388	. 00416	27.44	100	86	35	. 40535	1.84
46	92920	436	. 00469	26.55	101	51	22	. 42277	
47	92484	487	. 00527	25.68	102	29	13	. 44028	
48	91997	544	. 00591	24.81	103	16	7	. 457975	
49	91453	605	. 00662	23.95	104	9	4	. 47562	
50	90848	671	. 00739	23.11	105				
51	90177	742	. 000823	${ }_{22}^{22.28}$	106 107	${ }_{1}^{3}$	${ }_{1}^{2}$. 511368	
52	89435	818	. 00915	21.46		1	1	. 52938	
53 54	88617 87717	${ }_{989}^{980}$. 0101127	20.65 19.86					

Table IV. 1 Continued

$$
\begin{aligned}
& \text { 13a Castle Street, Edinburgh EH2 } 3 \text { 3R } \\
& 41 \text { The Hayes, Cardiff CF1 1 JW } \\
& \text { Brazennose Street, Manchester M60 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Brazennose Street, Manchester M60 8AS } \\
& \text { Southey House, Wine Street, Bristol BS1 2BO }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Southey House, Wine Street, Bristol BS1 2BO } \\
& 258 \text { Broad Street, Birmingham B1 } 2 \mathrm{HE}
\end{aligned}
$$

$$
\begin{aligned}
& 258 \text { Broad Street, Birmingham B1 } 2 \mathrm{HE} \\
& 80 \text { Chichester Street, Belfast BT1 } 4 \mathrm{JY}
\end{aligned}
$$

$$
\begin{aligned}
& 80 \text { Chichester Street, Belfast BT1 4JY } \\
& \text { Government publications are also available }
\end{aligned}
$$

$$
\begin{aligned}
& \text { thoverment puollcat } \\
& \text { trough booksellers }
\end{aligned}
$$

989L £0t-IO PL đHZ VZDM NOGNOT 'LGコY.LS TVDOLYOd‘o
GONAIOS TVOLLITOd
GNV SDINONODG IO TOOHDS NOGNOT

ตDNTIDS DINONOOヨ aNV TVDILITOd AO X \searrow VYgIT HSLLIIYG

[^0]: See 'Mortality at the oldest ages' (G T Humphrey) Journal of the Institute of Actuaries, Vol. 96, p. 105

